您的位置: 首页 - 站长

iis网站管理助手手机如何开发软件程序

当前位置: 首页 > news >正文

iis网站管理助手,手机如何开发软件程序,网站建设规划方案书,代理记账一般多少钱一个月Knowledge Fusion of Large Language Models (FuseLLM) Methodology 整体Pipeline如下图所示
不同的动物代表不同的LLM。左边第一#xff0c;第二分别是Ensemble以及Weight Merging方法。最右侧为本文提出的FuseLLM。 Ensemble: 融合多个models的预测结果#xff0c;比如…Knowledge Fusion of Large Language Models (FuseLLM) Methodology 整体Pipeline如下图所示
不同的动物代表不同的LLM。左边第一第二分别是Ensemble以及Weight Merging方法。最右侧为本文提出的FuseLLM。 Ensemble: 融合多个models的预测结果比如求加权平均等。Weight Merging在权重/参数层面融合但通常仅限于相同架构的模型。FuseLLM 主要思想为融合多个LLMs可以是不同架构的的probabilistic matrices得到Fused Matrix后喂给Target Model起到知识蒸馏的作用。 这里面会涉及到一个关键 不同LLM使用的Tokenizer可能不同设置也可能不一样如 model_max_length 分词结果可能不一样比如对同一个句子分词tokens总数不同使用的Vocabulary也可能不一样因此生成的probabilistic matrix在维度上可能有所不同如何解决对齐问题这个实际上就是 token alignment 问题本文中着重描述了解决方案。 Definition of Problem 假设我们有一个语料库 C \mathcal{C} C K K K个source LLMs, 对于文本 t ∈ C t \in \mathcal{C} t∈C经过 K K K个LLM处理可以得到对应的概率分布矩阵 probabilistic distribution matrix { P t θ j } j 1 K {\mathbf{P}^{\theta_j}t}^K{j1} {Ptθj​​}j1K​其中 θ j \theta_j θj​表示第 j j j个LLM的参数。我们要做的就是将这 K K K个概率分布矩阵融合然后送入Target LLM中辅助训练 P t F u s i o n ( P t θ 1 , P t θ 2 , … , P t θ K ) , \begin{align} \mathbf{P}_t\mathbb{F}\mathrm{usion}(\mathbf{P}_t^{\theta_1},\mathbf{P}_t^{\theta_2},\ldots,\mathbf{P}_t^{\theta_K}), \end{align} Pt​Fusion(Ptθ1​​,Ptθ2​​,…,PtθK​​),​​ P t \mathbf{P}_t Pt​即得到的融合概率分布矩阵Fused Representation Matrix。 为了将 P t \mathbf{P}_t Pt​迁移至target model中我们假设 Q t \mathbf{Q}t Qt​为其输出的representation matrix则Knowledge Fusion的训练目标为 L F u s i o n − E t ∼ C [ D ( Q t , P t ) ] . \begin{align} \mathcal{L}{\mathrm{Fusion}}-\mathbb{E}_{t\sim\mathcal{C}}\left[\mathbb{D}(\mathbf{Q}_t,\mathbf{P}t)\right]. \end{align} LFusion​−Et∼C​[D(Qt​,Pt​)].​​ 其中 D ( ⋅ , ⋅ ) \mathbb{D}(\cdot, \cdot) D(⋅,⋅)表示差异性函数具体实现可以是KL散度。 整体的模型损失如下 L λ L C L M ( 1 − λ ) L F u s i o n . \begin{align}\mathcal{L}\lambda\mathcal{L}{\mathrm{CLM}}(1-\lambda)\mathcal{L}{\mathrm{Fusion}}.\end{align} LλLCLM​(1−λ)LFusion​.​​ 其中 L C L M \mathcal{L}{\mathrm{CLM}} LCLM​表示最原始的ground-truth之间的损失 λ \lambda λ为系数。 实现细节 Token Alignment 我们假设有两个LLM使用不同的tokenizer。对同一段文本分词得到的token序列不同长度也不同 如上图用DeepSeek和TinyLlama各自的分词器分词得到的结果完全不一样。最终预测的概率分布矩阵也不一样。 Token-Level Alignment 为了解决这个问题FuseLLM采用基于最小编辑距离Minimal Edit Distance(MinED)的动态规划策略在token-level实现对齐以下图为例 具体实现的源代码other.py如下 def dtw(series_1, series_2, norm_funcnp.linalg.norm):Use dynamic time wrapping to align to tokenizers, modified from:https://github.com/talcs/simpledtw/blob/master/simpledtw.pyParameters———-series_1: List[str]blending_input_tokensseries_2: List[str]base_input_tokensnorm_func: functionedit distance evaluation between 2 tokensReturn Values———-matches: List[Tuple]matched pairs between a base token and a blending tokenmatrix[-1, -1]: int the total cost for mapping the two series of tokensmappings_series_1: List[List]mapping from blending tokens to base tokenseg: [0], [1, 2], [3, 4, 5], [6], …mappings_series_2: List[List]mapping from base tokens to blending tokensmatrix: List[int]the dtw matrixmatrix np.zeros((len(series_1) 1, len(series_2) 1))matrix[0, :] np.infmatrix[:, 0] np.infmatrix[0, 0] 0for i, vec1 in enumerate(series_1):for j, vec2 in enumerate(series_2):cost norm_func(vec1, vec2)matrix[i 1, j 1] cost min(matrix[i, j 1], matrix[i 1, j], matrix[i, j])matrix matrix[1:, 1:]i matrix.shape[0] - 1j matrix.shape[1] - 1matches []mappings_series_1 [list() for v in range(matrix.shape[0])]mappings_series_2 [list() for v in range(matrix.shape[1])]while i 0 or j 0:matches.append((i, j))mappings_series_1[i].append(j)mappings_series_2[j].append(i)option_diag matrix[i - 1, j - 1] if i 0 and j 0 else np.infoption_up matrix[i - 1, j] if i 0 else np.infoption_left matrix[i, j - 1] if j 0 else np.infmove np.argmin([option_diag, option_up, option_left])if move 0:i - 1j - 1elif move 1:i - 1else:j - 1matches.append((0, 0))mappings_series_1[0].append(0)mappings_series_2[0].append(0)matches.reverse()for mp in mappings_series_1:mp.reverse()for mp in mappings_series_2:mp.reverse()return matches, matrix[-1, -1], mappings_series_1, mappings_series_2, matrix Logit-Level Alignment 利用该对齐结果将不同LLMs得到的representation matrix对齐。关键代码other.py如下 def transform_step_logits(base_model_tokenizer: transformers.tokenization_utils_base.PreTrainedTokenizerBase,blending_model_tokenizer: transformers.tokenization_utils_base.PreTrainedTokenizerBase,base_model_vocab: Dict[str, int],base_model_input_ids: List[int],blending_model_input_ids: List[int],blending_model_per_step_logits: List[List[float]],blending_model_per_step_indices: List[List[int]],vocab_align_type: str hard,blending_to_base_mapping: Dict[str, str] None, ):Align blending model per step logits indices with base model.Parameters———-base_model_tokenizer: transformers.tokenization_utils_base.PreTrainedTokenizerBaseblending_model_tokenizer: transformers.tokenization_utils_base.PreTrainedTokenizerBasebase_model_vocab: Dict[str, int]mapping token to id using vocabulary of base modelbase_model_input_ids: List[int]ids of base_model_input_tokensblending_model_input_ids: List[int]ids of blending_model_input_tokensblending_model_per_step_logits: List[List[float]]logits for each token in blending_model_input_tokens blending_model_per_step_indices: List[List[int]]indices corresponding to logits for each token in blending_model_input_tokens vocab_align_type: str hardblending_to_base_mapping: Dict[str, str] Nonemapping each blending token to its corresponding base token Return Values———-aligned_blending_model_per_step_logits: List[List[float]]aligned logits for each token in base_model_input_tokens for the FuseLLM trainingaligned_blending_model_per_step_indices: List[List[int]]aligned indices corresponding aligned logits for each token in base_model_input_tokens for the FuseLLM training. Use the base model vocabulary to look up the token.base_model_tokens base_model_tokenizer.convert_ids_to_tokens(base_model_input_ids)blending_model_tokens blending_model_tokenizer.convert_ids_to_tokens(blending_model_input_ids)base_model_special_token TOKENIZER_TO_SPECIAL_TOKEN[base_model_tokenizer.class]blending_model_special_token TOKENIZER_TO_SPECIAL_TOKEN[blending_model_tokenizer.class]def dist_fn(a, b):Calculate editdistance between two tokens, a is from blending model, b is from base model.aa a.replace(blending_model_special_token, )bb b.replace(base_model_specialtoken, )dist editdistance.eval(aa, bb)return dist, _, _, base_to_blending, _ dtw(blending_model_tokens, base_model_tokens, norm_funcdist_fn)aligned_blending_model_per_step_logits, aligned_blending_model_per_step_indices ([],[],)for i, blending_idx in enumerate(base_to_blending):aligned_blending_model_per_step_logit []aligned_blending_model_per_step_index []if len(blending_idx) 1: # one base token map to one blending tokenj blending_idx[0]base_token base_model_tokens[i]blending_token blending_model_tokens[j].replace(blending_model_special_token, base_model_special_token)if ((blending_model_tokenizer.class transformers.GPTNeoXTokenizerFastor blending_model_tokenizer.class transformers.GPT2TokenizerFast)and i 0and base_token.startswith(base_model_special_token)and not blending_token.startswith(base_model_special_token)):blending_token (base_model_special_token blending_token) # special case for mptif vocab_align_type hard:if (base_token blending_token): # find the aligned mapping, use the corresponding logits# the logits and indices at this stepfor blending_logit, blending_index in zip(blending_model_per_step_logits[j],blending_model_per_step_indices[j],):# the token corresponds to the logit and indicesblending_t blending_model_tokenizer.convert_ids_to_tokens([blending_index])[0].replace(blending_model_special_token, base_model_special_token)if blending_t in base_model_vocab:aligned_index base_model_vocab[blending_t] # the index of the token in base model vocabif (aligned_indexnot in aligned_blending_model_per_step_index):aligned_blending_model_per_step_index.append(aligned_index)aligned_blending_model_per_step_logit.append(blending_logit)else: # find error aligned mapping, use the one-hot logitsaligned_blending_model_per_step_index.append(base_model_vocab[base_token])aligned_blending_model_per_step_logit.append(1.0)elif vocab_align_type soft:if (base_token blending_token) or (blending_token in blending_to_base_mappingand base_token blending_to_base_mapping[blending_token]): # find the aligned mapping, use the corresponding logits# the logits and indices at this stepfor blending_logit, blending_index in zip(blending_model_per_step_logits[j],blending_model_per_step_indices[j],):# the token corresponds to the logit and indicesblending_t blending_model_tokenizer.convert_ids_to_tokens([blending_index])[0].replace(blending_model_special_token, base_model_special_token)blending_t blending_to_base_mapping[blending_t]if blending_t in base_model_vocab:aligned_index base_model_vocab[blending_t] # the index of the token in base model vocabif (aligned_indexnot in aligned_blending_model_per_step_index):aligned_blending_model_per_step_index.append(aligned_index)aligned_blending_model_per_step_logit.append(blending_logit)else:logger.warning(fblending_t: {blending_t} not in base_model_vocab!)else: # find error aligned mapping, use the one-hot logitsaligned_blending_model_per_step_index.append(base_model_vocab[base_token])aligned_blending_model_per_step_logit.append(1.0)else:logger.warning(fThe vocab_align_type: {vocab_align_type} is not support!)raise NotImplementedErrorelse: # one base token map to multiple blending token, in this case only fit base token. use the one-hot logitsbase_token base_model_tokens[i]aligned_blending_model_per_step_index.append(base_model_vocab[base_token])aligned_blending_model_per_step_logit.append(1.0)aligned_blending_model_per_step_indices.append(aligned_blending_model_per_step_index)aligned_blending_model_per_step_logits.append(aligned_blending_model_per_step_logit)return (aligned_blending_model_per_step_logits,aligned_blending_model_per_step_indices,) Fusion Strategies: 得到对其的representation matrix以后由于不同的LLM具有不同的性能可以使用概率分布矩阵与ground-truth之间的交叉熵损失(CE loss)评估LLM的优劣再根据此判断选择哪些LLM参与知识融合。CE loss越低证明模型效果更好。具体而言作者提出了两种Fusion Strategy: MinCE: 仅选择CE loss最小的representation matrix用于知识融合。AvgCE: 基于各个模型的CE loss采用多个representation matrices的加权平均用于知识融合。 整体的算法流程如下
注这里Eq.5实际是本文中上述的Eq.3 一些思考 本文的思路是将多个LLMs输出的概率分布矩阵视为知识将知识融合后送入target LLM进行训练以达到融合多种模型知识提升目标模型性能的目的。但在实际的实现当中我们会发现logit-level的alignment要么是直接采用blending_model_per_step_logits/indices要么直接用ground-truth one-hot作为融合后的知识而没有充分评估logit-level中blending/base_model_per_step_logits之间的差异性。为此Probabilistic Token Alignment for Large Language Model Fusion提出采用Probabilistic Token Alignment方法在logit-level实现alignment。